Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As solar photovoltaic (PV) has emerged as a dominant player in the energy market, there has been an exponential surge in solar deployment and investment within this sector. With the rapid growth of solar energy adoption, accurate and efficient detection of PV panels has become crucial for effective solar energy mapping and planning. This paper presents the application of the Mask2Former model for segmenting PV panels from a diverse, multi-resolution dataset of satellite and aerial imagery. Our primary objective is to harness Mask2Former’s deep learning capabilities to achieve precise segmentation of PV panels in real-world scenarios. We fine-tune the pre-existing Mask2Former model on a carefully curated multi-resolution dataset and a crowdsourced dataset of satellite and aerial images, showcasing its superiority over other deep learning models like U-Net and DeepLabv3+. Most notably, Mask2Former establishes a new state-of-the-art in semantic segmentation by achieving over 95% IoU scores. Our research contributes significantly to the advancement solar energy mapping and sets a benchmark for future studies in this field.more » « less
-
In this article, we propose a deep learning based semantic segmentation model that identifies and segments defects in electroluminescence (EL) images of silicon photovoltaic (PV) cells. The proposed model can differentiate between cracks, contact interruptions, cell interconnect failures, and contact corrosion for both multicrystalline and monocrystalline silicon cells. Our model utilizes a segmentation Deeplabv3 model with a ResNet-50 backbone. It was trained on 17,064 EL images including 256 physically realistic simulated images of PV cells generated to deal with class imbalance. While performing semantic segmentation for five defect classes, this model achieves a weighted F1-score of 0.95, an unweighted F1-score of 0.69, a pixel-level global accuracy of 95.4%, and a mean intersection over union score of 57.3%. In addition, we introduce the UCF EL Defect dataset, a large-scale dataset consisting of 17,064 EL images, which will be publicly available for use by the PV and computer vision research communities.more » « less
An official website of the United States government

Full Text Available